
Shells 5-1

Chapter 5: Shells

This chapter discusses the concept of a UNIX shell, and how to manipulate
shells. It includes information on the available and recommended shells and
their features. The concept of a shell as an interpretive programming language
is introduced.

5.1 Introduction to Shells

The kernel is the real operating system and is loaded into memory at boot time.
Typically the user doesn’t interact directly with the kernel. The utilities are
programs stored on disk, and loaded into memory by the kernel when invoked.

A shell is a utility. It is run in user mode, and does not have system privileges.
You have a default shell, and you can invoke other shells. Invoking shells is
discussed in section 5.1.2 Starting a Shell.

The shell is the interface between the operating system and the user. It
interprets the commands you type and the keys you press in order to direct the
operating system to take an action. Shell scripts allow you to use the shell as
an interpretive programming language. They are introduced in section 5.4
Shell Scripts, but a comprehensive treatment of scripts is beyond the scope of
this manual.

There are two families of shells: one based on the Bourne shell (this family
also includes the Korn (ksh) and Bourne-again (bash) shells), and the other
based on the Berkeley/C shell. The shells themselves will be discussed and
compared in section 5.2 Features of Available Shells.

5.1.1 Determining Your Current Shell

There are several commands available in all the shells that can tell you your
current shell. We present four examples below with sample output for csh. The
first three, echo, env and finger, will show only your login shell. If
you have invoked another shell, these commands will not reflect the new shell.
ps lists information about all your active processes.

% echo $SHELL

5-2 Shells

displays the value of the variable name that follows the $; sample output:
/bin/csh

% env or printenv

shows all defined environment variables, including SHELL; sample output:
SHELL=/bin/csh

% finger <your_username>

shows user information and login shell; sample output:
 Login name: username In real
life: {your name}

 Directory: /afs/fnal.gov/files/home/room3/{username}
Shell: /bin/csh

Finally,

% ps

shows processes, including shell; sample output:
 PID TTY TIME COMD

 6264 pts/11 0:03 csh

Note that on some of the more recent OS releases /bin/sh is a link (links
are described in section 7.3.5 Reference a file: ln) to the korn shell (ksh). ksh is
a superset of sh, so this shouldn’t present any problems for you. One difference
is that your .shrc file (see section 9.8 Tailoring Your Environment) gets
sourced when you run /bin/sh scripts.

5.1.2 Starting a Shell

A shell is started by a login process. A new shell is also started for each
invocation of a terminal window or shell script (see section 5.4 Shell Scripts).
Which shell gets invoked is determined by the last field in your entry in the
password entry file. In a standard UNIX file system you can display your
password entry by the command:

% grep ^<username> /etc/passwd

(grep is described in section 7.4.2 Search for a Pattern: grep.; the use of ^
is explained in section 6.4.5 Regular Expressions.) To display your password
entry in an NIS environment, use the command:

% ypmatch <username> passwd

(The NIS command ypmatch is not described in this manual.) The
password itself isn’t useful, but it displays other information, e.g., your home
directory and numeric user-id. Sample ypmatch output from the FNALU
system, for which the default shell has been set to csh, looks like:

aheavey:!:6302:1525:Name of User:

/afs/fnal.gov/files/home/room3/aheavey:/bin/csh

Shells 5-3

When you log in, the login process invokes a shell program (e.g.,
/usr/local/bin/tcsh or /usr/local/bin/bash) and transfers
control to it. The shell displays a prompt indicating it is ready for your input.
The default UNIX prompts are symbols that indicate which shell is invoked
(recall from section 1.3.4 The Command Prompt that your prompt is likely to
be set differently):

• % for the C shell family

• $ for the Bourne or Korn shells

On FNALU the prompts are set to indicate the host machine, for example
<fsui01>, or <fsgi02>. At any point in your session you can invoke
another copy of the same shell or a different shell by typing the shell name at
the prompt, for example:

% csh

invokes csh (C shell). This new shell, or “subshell”, sits on top of your current
shell. The execution of the original shell is then suspended (the shell is put to
sleep), and the new shell takes control. Upon quitting the new one, the original
shell wakes up and resumes control.

The average user at Fermilab does not have the privilege to change the
password entry file. Therefore, to change your default shell you will need to
ask your system manager.

5.1.3 Exiting a Shell

To exit a shell and return to the calling shell, type exit at the prompt.
Repeat the exit command once for each subshell; when you reach your
initial shell, your terminal emulation is closed, and the terminal window
disappears. Instead of exit you may need to enter <CTRL-D>.

5.2 Features of Available Shells

This section is excerpted from Shell Choice, A shell comparison (dated
September 28, 1994) by Arnaud Taddei of CERN. His eleven-page document
contains a brief description of the six major shells and provides an excellent
comparison of features between the shells. It is available on the Web at
http://consult.cern.ch/writeup/shellchoice.

Of the six major shells, four are in the Bourne family: sh, ksh, bash, and zsh; and
two are in the Berkeley/C family: csh, tsch.

5-4 Shells

The most up-to-date shells are tcsh (Berkeley/C), and bash and zsh (Bourne).
These are also the three shells that are public domain (as opposed to
vendor-supported). The public domain shells are the same on all platforms,
which is not true of vendor shells. This is desirable when attempting to
homogenize user environments. Note that zsh is not supported at Fermilab.

Some of the common features of these newer shells are:

• specific startup files

• startup files are the same for any platform

• specific shell variables

• specific built-in commands

The tcsh is essentially an enhanced csh. Some additional features of the tcsh
are:

• enhanced completion1 mechanism (programmable for commands, file
names, variable names, user names, etc.)

• multiline editing capabilities (command line editing using emacs or
vi-style key bindings)

• enhanced file expression syntax

• spelling correction (see section 6.3 Command Recall)

• enhanced prompt

• step up/down through history list

The following table should give you an idea of the virtues of each of the shells
supported at Fermilab. It is adapted from one in Taddei’s document referenced
above. More complete feature lists for all the shells can be found there.

++ good

+ existing

- weak

-- absent

1. This feature allows you to uniquely specify a file without typing in its whole name.

Criteria sh ksh bash csh tcsh

Configurability - + ++ + ++

Execution of
commands

+ + + + ++

Completion -- + ++ + ++

Line editing - + ++ - ++

Shells 5-5

5.3 Supported/Recommended Shells at Fermi-
lab

On many systems at Fermilab, tcsh is used as the default shell. The Computing
Division currently supports csh, tcsh, sh, bash and ksh. tcsh or bash is
recommended for interactive use, and sh for scripts. (The C shell family is not
recommended for scripts due to inconsistent syntax at different levels of
nesting.) zsh is not currently supported. The supported shells are listed on
http://www-oss.fnal.gov/uas/.

5.4 Shell Scripts

As mentioned above, a UNIX shell can be used as an interpretive programming
language. Besides executing shell commands within the script, you can:

• create and use variables

• process (read) arguments

• test, branch, and loop

• perform I/O

Name substitution + + ++ + ++

History -- + ++ + ++

Redirections and
pipes

+ + + + +

Spelling correction -- -- -- -- +

Prompt settings + + + + ++

Job control -- + + + +

Execution control + + + + +

Signal handling + + + - -

Criteria sh ksh bash csh tcsh

5-6 Shells

A shell script is a file containing a sequence of commands which can be
executed by the shell, and flow control commands. The same syntax is used
for commands within scripts as for interactive command entry. Section 5.1.2
Starting a Shell explains briefly how the system runs and interprets shell
scripts.

Although you can write complex programs using the shell language, you can
also create simple shell scripts for running long commands or a series of
commands that you use frequently.

In every shell script you write, include the special characters #! followed by
the pathname of the shell as the first characters in the file. This indicates (a)
that this is a script rather than a compiled executable, and (b) which shell to
invoke to run the script.1

For example:

#!/usr/local/bin/bash

at the start of the script invokes bash to run it. A # found anywhere else in the
script is interpreted as the beginning of a comment, and the shell ignores all
characters between the # symbol and the next newline character.

An introductory reference for script-writing with examples can be found under
UNIXhelp for Users at http://www.geek-girl.com/Unixhelp/.

Note that in order to execute the script, regardless of shell, the script file must
have execute permission for the appropriate users (see section 7.6.1 File
Access Permissions for a discussion of permissions). After you set this
permission, the shell will need to rebuild its “hash table” to include the new
script. The hash table is a table of executables that the shell recognizes.

To complete these two operations, enter:

% chmod a+x <filename>

% rehash2

To run a script, the shell must be able to locate it. If its directory is in your path
(see section 9.6 Some Important Variables), you only need to type the script’s
filename to run it. If not, you can type the the filename preceded by ./ on
the command line (the ./ explicitly tells the shell to look for the executable
file in the current working directory). Typing the full path of the filename will
work too, although it is perhaps the most cumbersome way of telling the shell
where the script is. Here we illustrate the three ways to invoke a script:

% scriptname

% ./scriptname

1. On some of the more recent OS releases /bin/sh is a link to the korn shell (ksh).
Therefore on these platforms, the .shrc file gets sourced for any script starting with
#!/bin/sh.
2. The command in sh is hash; not necessary in other shells.

Shells 5-7

% /full_path/.../scriptname

Once the shell locates the script, it interprets and executes the commands in the
file one by one.

You may want to maintain a $HOME/bin directory for all your programs
and shell scripts, and include this directory in your path1. The shell uses this
variable to locate commands and other executables.

It is important to remember that, like all UNIX commands that are not part of
the shell (see section 6.1.1 Programs, Commands and Processes for an
explanation of shell commands), the script file executes in a subshell forked2
by the parent shell. This subshell retains any environment variables defined in
the script as well as any shell variables defined in the file .cshrc or .shrc
(one of these two files may be executed automatically prior to the script,
depending on your shell). At the end of the script, control returns to the parent
shell, and any definitions made by the subprocess are not passed back to the
parent process.

To execute a script for which you do want to pass back changes to the parent
shell (for example, setting new shell variables), the syntax for execution
differs. For the C shell family, execute the script by typing:

% source <scriptname>

For the Bourne shell family, type:

$. <scriptname>

The source or . command executes the script in the context of your
current process, so that you can affect this current process, in contrast to
normal command execution.

For instance, after you make changes to your .cshrc or .login file, you
can use source or . to execute it from within the login shell in order to
put the changes into effect.

5.5 Other Interpretive Programming Lan-
guages

We have mentioned that each UNIX shell can be used as the interpreter for its
own programming language. Other interpretive languages supported at
Fermilab are perl (provided in the FUE shells product), and gawk (a version of
awk). These languages are beyond the scope of this manual. The O’Reilly &
Associates, Inc. publishers provide excellent reference texts on them.

1. Under FullFUE, the Fermi files add your /bin directory to your PATH.
2. Under UNIX, the term fork means create a new process.

5-8 Shells

